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1 Introducing the Bloch Sphere or Spin Vector space

1.1 Review of the 3D spin vector

Last year (in section 6.2 of the “old notes”) we worked with an arbitrary spin vector in

physical 3-D space, and learned how to calculate the equivalent quantum state in our math-

ematical model which is a 2-D complex vector space.

Complex Vector Space Physical Spin Space

Let’s just review that now. In the 3-D physical space we have a spin vector ~S =

 Sx

Sy

Sz

.

The three components of ~S are simply the projections of that vector along the X, Y, and

Z axes. There are some obvious relationships between spin vectors and quantum states. For

example:

|+ x〉 7→

 1

0

0

 , |+ y〉 7→

 0

1

0

 , |+ z〉 7→

 0

0

1

 , and so on.

In the complex vector space an arbitrary (1 bit) state is a column vector with two complex

components:

(
α

β

)
. Of course, we can’t really plot the complex space, so we typically just
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draw the subset of this space that corresponds to a real plane. That’s what I’ve done above.

This plane is sufficient to plot any states that represent spin vectors in the XZ plane in the

3-D spin space.

1.2 The Bloch Sphere is just the spin vector space

Now the Bloch Sphere is simply a unit circle drawn around the origin in the 3-D spin vector

space.

Vector Space Bloch Sphere

The Bloch sphere is typically used in the quantum information context. So rather than talk

about spin vectors, we’ll often be talking about the states of quantum bits. All the math is

completely equivalent. Just remember that:(
1

0

)
= |+ z〉 = |0〉,

(
0

1

)
= | − z〉 = |1〉

1√
2

(
1

1

)
= |+ x〉 = |+〉, 1√

2

(
1

−1

)
= | − x〉 = |−〉

Also, where before we thought of the spin space as the actual three dimensional physical space

in which we might (for example) do a Stern-Gerlach type experiment, now we’re thinking

of the Bloch sphere as another abstract type of mathematical space in which we’ll visualize

various aspects of quantum bits. So we may have something more like this:
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Bit State Bloch Sphere

Here I’ve just plotted points on the sphere to represent the various bit states, rather than

arrows. Note that all valid (pure) quantum bit states will appear on the surface of the Bloch

sphere. That is, they will be at a distance of 1 from the origin. If we plot them as vectors,

they will have a length of 1.

2 Translating between the two spaces

Translating between the quantum “state space” (the complex vector space) and the “spin

space” (the space of physical spin vectors or the Bloch sphere) can be summarized as follows:

To go from spin space to state space:

1. Determine the components of the spin vector.

2. Use them to construct a weighted sum of σx, σy, and σz.

3. The resulting matrix represents the quantum system in state space.

To go from state space to spin space:

1. Create a matrix representing the quantum system.

2. Decompose it as a weighted sum of σx, σy, and σz.

3. Use the weights as the elements of the spin vector.
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2.1 Going from Spin Space to Vector Space

Given a spin vector ~S we want to determine the corresponding bit state |S〉. Here are the

steps in detail:

(1) Determine the components of the spin vector

Given the spin vector ~S, you want the vector’s three components Sx, Sy, and Sz.

If you were given ~S in vector form then you already have them. If you were given
~S in some other form (based on angles, for example) then Sx, Sy, and Sz. are the

projections of ~S onto the X, Y, and Z axes.

(2) Use them to construct a weighted sum of σx, σy, and σz.

The three Pauli matrices are the observable operators which represent the X, Y,

and Z bases. Write out a linear combination of them weighted by Sx, Sy, and Sz

like this:

σS = Sxσx + Syσy + Szσz = Sx

(
0 1

1 0

)
+ Sy

(
0 −i
i 0

)
+ Sz

(
1 0

0 −1

)
(3) The resulting matrix represents the quantum system in state space

The result of the sum above is σS, which is the observable matrix for the S basis.

That is, the basis consisting of the states |+ S〉 and | − S〉.

To determine the actual state, find the eigenvectors of σS. The vector with the

+1 eigenvalue is |+S〉 or simply |S〉, the state corresponding to the spin vector ~S.

The procedure for finding the eigenvalues and eigenvectors of a 2x2 matrix can

be found in section 5. But the eigenvectors won’t always come out nicely. I would

encourage you to simply use the computer to find them. You can use the Python

code I supplied last year, or there are a couple of websites that will do it which are

also listed in section 5.

PDF generated June 26, 2018

4

Copyright c© 2018 Denver Physics Group, info@DenverPhysics.org



Example: ~S is given as 30◦ up from the X axis

Suppose we’re given the spin vector in angle form as

being 30◦ up from the X axis.

Step (1):

The projection along the X axis is cos(30◦) =
√

3/2.

Along the Z axis its sin(30◦) = 1/2. Since ~S is in the

XZ plane there is no projection onto Y . So we have:

Sx =

√
3

2
, Sy = 0, Sz =

1

2
.

Step (2):

The weighted sum of the sigmas is:

σS =

√
3

2

(
0 1

1 0

)
+

1

2

(
1 0

0 −1

)
=

1

2

(
1
√
3√

3 −1

)

Step (3):

From the observable matrix σS we can calculate the

eigenvectors (and states) as:

|+ S〉 =
1

2

( √
3

1

)
, | − S〉 =

1

2

(
1

−
√
3

)
(See section 5 for the details.)

You can verify that these states are the eigenvectors of σS by doing the multiplications:

1

2

(
1
√
3√

3 −1

)
1

2

( √
3

1

)
= (+1)

1

2

( √
3

1

)
,

1

2

(
1
√
3√

3 −1

)
1

2

(
1

−
√
3

)
= (−1)

1

2

(
1

−
√
3

)
Since the states we found don’t contain any imaginary parts, we can plot them on the

2-D state space plane (above). Note that |+ S〉 and | − S〉 are orthogonal, as they must be

in order to form an orthonormal basis.
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2.2 Going from Vector Space to Spin Space

Now we’ll look at the detailed steps in going from state space to spin space. Step 1, creating

the matrix, may be done in different ways depending on the situation. But the other two

steps will be the same. So we’ll cover steps 2 and 3 first and then talk about step 1.

(1) Create a matrix representing the quantum system.

We’re just going to assume for the moment you have the matrix. For example, this

could be be an observable matrix, such as the σs we constructed in the example

above.

(2) Decompose it as a weighted sum of σx, σy, and σz.

Any valid matrix which represents a state is going to be in the form:(
z x− yi

x+ yi −z

)
Therefore the decomposition is easy. The values x, y, and z in the matrix are the

weights of σx, σy, and σz:(
z x+ yi

x− yi −z

)
= x

(
0 1

1 0

)
+ y

(
0 −i
i 0

)
+ z

(
1 0

0 −1

)
(3) Use the weights as the elements of the spin vector.

So the desired spin vector (Bloch vector) is simply:

 x

y

z


Now we’ll talk about how to create the matrix that represents the state. There are two kinds

of states we wish to represent, pure states and mixed states. When working with a pure

state, we might start out with either the state vector or the state’s density matrix. When

working with a mixed state, there is no state vector so we’ll definitely be using a density

matrix. If we’re working with one of the bits derived from an entangled state, then we treat

it as mixed and it’s represented by a density matrix.

When we plot a pure state it will be a vector of length one (or if depicted as a dot it

will appear on the surface of the Bloch sphere). When we plot a mixed state (or a bit from

an entangled state) it will be a vector with length less than one (or the dot will appear on

the inside of the sphere). A maximally mixed (or entangled) bit will be a dot at the center

of the sphere.
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2.3 Creating the observable matrix from a state vector

Suppose we have a state |ψ〉 = α|0〉+ β|1〉 =

(
α

β

)
.

Then the matrix we are looking for is the observable matrix for the basis in which |ψ〉 is the

“+” eigenvector state.

In general, given a basis {|bn〉}, the observable matrix for that basis is:∑
n

λn|bn〉〈bn|, where λn is the eigenvalue associated with the nth basis vector.

In other words, you can find the observable for a basis by adding up the outer products of

the basis vectors weighted by their desired eigenvalues.

So here we have the state |ψ〉 and we want it to have the +1 eigenvalue. Since this is a

one-bit state, we will have one additional basis vector, let’s call it: |ψ⊥〉, which we want to

have the -1 eigenvalue. So the summation will be:

|ψ〉〈ψ| − |ψ⊥〉〈ψ⊥|

What is |ψ⊥〉 (the complementary or orthogonal state to |ψ〉)? Well, if |ψ〉 = α|0〉 + β|1〉,
then |ψ⊥〉 is β∗|0〉 − α∗|1〉. If α and β are real, then you should be able to see, simply by

looking at their angles in state space, the they’re orthogonal. Algebraically:

〈ψ|ψ⊥〉 =
(
α∗ β∗

)( β∗

−α∗

)
= α∗β∗ − α∗β∗ = 0

Example: Given the state |ψ〉 =
1

3
|0〉+

√
8

3
|1〉, then |ψ⊥〉 =

√
8

3
|0〉 − 1

3
|1〉

(1) Create the matrix

σψ = |ψ〉〈ψ|−|ψ⊥〉〈ψ⊥| =

 1

3
√
8

3

( 1

3

√
8

3

)
−


√
8

3

−
1

3

( √
8

3
−
1

3

)
=

 −
7

9

4
√
2

9

4
√
2

9

7

9



(2) Decompose it

 −
7

9

4
√
2

9

4
√
2

9

7

9

 =
4
√

2

9

(
0 1

1 0

)
− 7

9

(
1 0

0 −1

)

(1) And the spin vector is:
(

4
√
2

9
0 −

7

9

)
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2.4 Creating the observable matrix from a density matrix

There’s another way to get the observable matrix for a one-bit state, and that is to work

with the state’s density matrix.

When you add up the outer products of all the vectors in a basis, you get the identity

operator:∑
n

|bn〉〈bn| = I

This is referred to as the “completeness relation” (i.e., if this formula holds then you have a

complete set of basis vectors).

Bearing in mind (from above) that the observable for the state |ψ〉, which we call σψ is

|ψ〉〈ψ| − |ψ⊥〉〈ψ⊥|

We can derive the formula:

σψ = 2ρψ − I

(Where ρψ is the density matrix for |ψ〉.)

The algebra goes like this:

σψ = 2ρψ − I

= 2|ψ〉〈ψ| − I Because ρψ is the outer product of |ψ〉 with itself.

= 2|ψ〉〈ψ| −
(
|ψ〉〈ψ|+ |ψ⊥〉〈ψ⊥ |

)
Replace I with the sum of the basis vectors.

= |ψ〉〈ψ| − |ψ⊥〉〈ψ⊥| Do the subtraction.

One big advantage of this method is that you can use it for any density matrix. So it can

also be used to plot mixed states on the Bloch sphere. When you start out with a mixed

state, then the σ you obtain is not literally an observable operator, but it’s still the matrix

that you need to decompose in order to get the spin vector.

When you plot a mixed state in spin space, you get a vector having a length of less than one

(or a point on the inside of the unit sphere).
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3 Some Examples

Example-1

|ψ〉 =
1

2
|0〉+

√
3

2
|1〉

ρ =


1

4

√
3

4√
3

4

3

4



θ =
2π

3
≈ 2.09

φ = 0 ≈ 0.00

~S =


√
3

2
0

−
1

2

 , ∣∣∣~S∣∣∣ = 1

|ψ〉 =


1

2√
3

2

 , ρ =


1

4

√
3

4√
3

4

3

4

 , σψ =

−
1

2

√
3

2√
3

2

1

2

 =

(√
3

2

)[
0 1

1 0

]
+

(
−
1

2

)[
1 0

0 −1

]

Example-2

|ψ〉 =
1

4
|0〉+

√
15

4
|1〉

ρ =


1

16

√
15

16√
15

16

15

16



θ = acos

(
−
7

8

)
≈ 2.64

φ = 0 ≈ 0.00

~S =


√
15

8
0

−
7

8

 , ∣∣∣~S∣∣∣ = 1

|ψ〉 =


1

4√
15

4

 , ρ =


1

16

√
15

16√
15

16

15

16

 , σψ =

 −
7

8

√
15

8√
15

8

7

8

 =

(√
15

8

)[
0 1

1 0

]
+

(
−
7

8

)[
1 0

0 −1

]
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Example-3

ρ =

1

4
0

0
3

4



θ = π ≈ 3.14

φ = 0 ≈ 0.00

~S =


0

0

−
1

2

 , ∣∣∣~S∣∣∣ = 1

2

|ψ〉 = None, ρ =

1

4
0

0
3

4

 , σψ =

−1

2
0

0
1

2

 =

(
−
1

2

)[
1 0

0 −1

]

Example-4

ρ =

 3

4

1

6
−
i

4
1

6
+
i

4

5

12



θ = acos

(
3
√
22

22

)
≈ 0.88

φ = atan

(
3

2

)
≈ 0.98

~S =


1

3
1

2
1

2

 ,
∣∣∣~S∣∣∣ = √22

6

|ψ〉 = None, ρ =

 3

4

1

6
−
i

4
1

6
+
i

4

5

12

 , σ =

 1

2

1

3
−
i

2
1

3
+
i

2
−
1

6

 =

(
1

3

)[
0 1

1 0

]
+

(
1

2

)[
0 −i
i 0

]
+

(
1

2

)[
1 0

0 −1

]
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4 Summary of Formulae

4.1 The Completeness Relation

Given an (orthonormal) set of basis vectors: { |bn〉}, the sum of their outer products will add

up to the identity operator: ∑
n

|bn〉〈bn| = I

4.2 Constructing an observable matrix (general case)

Given the basis vectors: { |bn〉} and the associated eigenvalues: {λn}, the observable matrix

for the basis (sometimes called σb) is: ∑
n

λn|bn〉〈bn|

4.3 Constructing an 1-bit “observable” matrix (including mixed states)

If you only have a 1-bit state |ψ〉 you can also do the following:

(1) Create the density matrix ρ = |ψ〉〈ψ|.
(2) σψ = 2ρ− I.

If you already have the density matrix (say for a mixed state) you can just do:

σmix = 2ρ− I.

4.4 Decomposing the observable matrix

(
z x− yi

x+ yi −z

)
= x

(
0 1

1 0

)
+ y

(
0 −i
i 0

)
+ z

(
1 0

0 −1

)

4.5 To get the angles of the spin vector from the state

Given a state

(
α

β

)
you can get the angles of the spin vector ~S as:

θ = 2 cos−1(|α|), where θ is the angle from ~Z to ~S.

φ = arg(β)− arg(α), where φ is the angle from ~X to ~S.

Note that arg() gives the angle of α or β on the complex plane.
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5 Finding Eigenvalues and Eigenvectors

5.1 Finding eigenvectors on the computer

This is the way I recommend doing it. In most cases (other than carefully constructed exam-

ples) the eigenvectors you find are going to be complicated (roots within roots for example)

and will be better done as numeric approximations. Also, there is not a lot to be “learned”

by doing this process by hand. Of course, if you’re about to take a linear algebra class then

you had better learn to do it :-)

If you’re using the Python code I distribued earlier, see the notebook: 0100 How to use sglib.ipynb

and look for the section called “Finding Eigenvectors.”

Otherwise, here are two websites that will do it:

http://www.wolframalpha.com will accept a query like this:

eigenvalues {{0,1,2,0},{1,0,1,1},{1,1,1,1},{0,0,0,1}}

http://www.sympygamma.com will take something like this:

Matrix([(0,1,2,0),(1,0,1,1),(1,1,1,1),(0,0,0,1)])

For the example in section 2.1, with σS =
1

2

(
1
√

3√
3 −1

)

You can calculate the eigenvectors on Sympy Gamma using:

Matrix([(1/2, sqrt(3)/2), (sqrt(3)/2, -1/2)])

or on Wolfram Alpha using:

eigenvalues {{1/2, sqrt(3)/2}, {sqrt(3)/2, -1/2}}

Remember that the vectors you get from these websites still need to be normalized.
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5.2 Finding eigenvectors by hand

Given a matrix M and a vector |v〉, if M |v〉 = λ|v〉 we say that |v〉 is an eigenvector of M

and λ is the eigenvalue associated with |v〉. In the situations we will deal with it is typical

for a matrix of dimension n to have n eigenvectors, each with an associated eigenvalue.

Given a matrix

(
a b

c d

)
and a vector

(
α

β

)
some algebra will show that, for the vector

to be an eigenvector of the matrix, the eigenvalue λ must satisfy the 2nd degree polynomial

equation:

λ2 − (a+ d)λ+ (ad− bc) = 0

This is sometimes called the characteristic equation of the matrix. This equation can always

be solved, either by factoring or by the quadratic formula:

λ =
1

2

(
−B ±

√
B2 − 4C

)
, B = −(a+ d), C = (ad− bc)

But the fact that this equation can always be solved for λ does not mean that every 2 × 2

matrix has valid eigenvectors. for example, it will sometimes it will turn out either that λ

is zero, or that the resulting eigenvectors are filled with zeros. In cases like this, we do not

have valid eigenvectors.

Once you have found the possible λs (there will typically be two different ones, for a di-

mension 2 matrix) then you take each one and plug it back in to the original eigenvalue

equation. What you will end up with is simply a ratio between the two components of the

vector. For the matrix and vector above, you will get:

α =
−bβ
a− λ

For matrices with dimension of n greater than 2, the same principle still works, but the

characteristic equation will be of the nth degree, and may not solvable. Normally we would

go to the computer to find eigenvalues if we’re dealing with more than a ‘one bit’ state.

6 Unitary operations as rotations on the Bloch sphere

(TBD)
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