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Spacetime, coordinate systems, and tensors

• General relativity is based on the idea that the world of four-dimensional spacetime is

curved rather than Euclidean.

• The curvature (of both space and time) is determined by the distribution of mass/energy.

• This means that the curvature is potentially different at every point in spacetime.

• So at each point in spacetime we may have a different coordinate system.

• Because of all this, we need to write equations in such a way that they will be valid in

any coordinates.

• Such equations are called covariant and the idea behind this is referred to as general

covariance.

• This is the whole reason we use tensors. Tensors “transform properly” and “mean the

same thing” in different coordinate systems (or frames). Therefore, equations written

entirely in tensors are automatically covariant. They are valid at all points in spacetime.

The lack of Cartesian reference coordinates

• In previous work (Mechanics and E&M, for example) we had coordinate systems like

(2D) polar and (3D) spherical, etc. In all of these cases we could use geometric arguments

to establish a relationship to Cartesian coordinates.

• So when things got complicated (like basis vectors changing) we could fall back to

Cartesian. We were never forced to work completely in any of the other systems.

• We don’t have this luxury in GR for two reasons:

1. The translations might be very hard to work out for arbitrary curvature. Plus, we’d

potentially need to do it individually for every point in spacetime.

2. We are dealing with intrinsic curvature and (apparently) some intrinsically curved

spaces can’t be embedded in a higher dimensional Euclidean space.
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Vectors and tangent spaces

• At each individual point in spacetime we can imagine a tangent space. The tangent

space is flat rather than curved.

• You can draw an infinitesimal vector (or differential displacement) in curved spacetime

because it has no length, only direction. You can’t draw a finite-length vector (or

displacement) in curved spacetime, because it would “stick out” of the curved space.

• However, you can draw a finite vector in the tangent space that intersects the curved

space at the tail of the vector.

• So when dealing with vectors you have the choice of thinking of them as finite and in

the tangent space or as differential and in curved spacetime.

Some tensor basics

Remember that, officially: [xµ] is the upper index vector x, whereas xµ is the µth component

of that vector. We don’t always adhere to that distinction. But I’ll try to remember to do it

in what follows.

[vµ] is called a vector.

It might be the tangent vector along a parameterized path in spacetime.

[φµ] is called a one-form.

It might be the change in a scalar function on spacetime as we move along the path

above. In other words, a gradient.

(By the way, there is no special significance to the names v and φ. I’m just using variable

names that are evocative of the concepts in play.)

Now, assume that we have two different coordinate systems. I’ll use a bar rather than a

prime to distinguish them (because the prime tends to get in the way of the upper index).

In the full spacetime we have four dimensions, so in each coordinate system a vector can be

indexed by µ where µ runs from 0 to 3. But we’ll also look at simpler examples with fewer

dimensions.
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We have some transformation T which takes a vector in the unbarred system and outputs a

vector in the barred system:

x̄ = T (x)

Bear in mind that each component in one basis will generally depend on all the components

in the other basis:

x̄0 = T0
(
x0, x1, x2, x3

)
x̄1 = T1

(
x0, x1, x2, x3

)
x̄2 = T2

(
x0, x1, x2, x3

)
x̄3 = T3

(
x0, x1, x2, x3

)
So given that we know all these transformations, we will know how a given barred object

changes when the corresponding unbarred change happens. That is to say, we will know the

partial derivative: ∂x̄µ/∂xµ.

Now we are in a position to state tensor transformations between the unbarred system and

the barred system:

(1) v̄µ =
∂x̄µ

∂xν
vν

(2) φ̄µ =
∂xν

∂x̄µ
φν

Why do we even need these if we already have the transformation T? I suppose that equations

involving the partial derivatives might be useful, even if we don’t know what their values are.

But I think the main point is that these tensor transformations are what we are going to

build on in order to pursue general covariance. To be able to write all our equations using

only tensors.

Just to be clear: An object is a legitimate upper-indexed (rank 1) tensor if it transforms

according to rule (1) above. It’s a legitimate lower-indexed tensor if it transforms according

to rule (2). Now we’ll investigate some specific objects to see if they follow those rules.
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Tensors with upper indices

Let us stipulate that: [xµ] is a position vector for a parametric path in spacetime.

Its components are: x0(λ), x1(λ), ..., where λ is the scalar parameter of the path.

So the component xµ = xµ(λ).

A differential displacement vector

Consider the differential (infinitesimal) displacement along the path [xµ]. Call a component

of the displacement dxµ. What happens when we transform this to dx̄µ?

Since each barred component is a function of all the unbarred components, we have:

dx̄µ =
∂x̄µ

∂x0
dx0 +

∂x̄µ

∂x1
dx1, ... So that dx̄µ =

∂x̄µ

∂xν
dxν .

So the differential displacement vector is an upper-indexed tensor.

A tangent vector

Suppose that [vµ] is the tangent vector to the position vector [xµ] above.

Then it will have the components: v0 =
dx0

dλ
, v1 =

dx1

dλ
, ... In other words vµ =

dxµ

dλ
.

When we transform it, each component of [v̄µ] must end up being: v̄µ =
dx̄µ

dλ
.

However,
dx̄µ

dλ
=
∂x̄µ

∂x0
dx0

dλ
+
∂x̄µ

∂x1
dx1

dλ
, ... =

∂x̄µ

∂xν
dxν

dλ

And since
dxν

dλ
= vν , we have: v̄µ =

∂x̄µ

∂xν
vν .

So a tangent vector is an upper-indexed tensor.

Spacetime vs. the tangent space

With regard to the two tensors above, the tangent vector [vµ] has a finite extent. It “points

out” of curved spacetime. Therefore, it must exist in the tangent space.

The differential displacement vector [dxµ] is also tangent to the curve [xµ]. But being in-

finitesimal, it can exist in curved spacetime.
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Tensors with lower indices

Assume that φ is a scalar function on spacetime.

So it takes on a specific value at any given point, and is a function of the coordinates.

The function φ = φ
(
x0, x1, ...

)
.

As an example, φ might be the temperature along the path xµ defined above.

Now define the [φµ] to be the change in φ as we move along the path.

The component φµ will be:
∂φ

∂xµ
.

When we transform this component (which depends on all of the unbarred variables) applying

the chain rule gives:

φ̄µ =
∂φ

∂x̄µ
=

∂φ

∂xν
∂xν

∂x̄µ
=
∂xν

∂x̄µ
∂φ

∂xν
=
∂xν

∂x̄µ
φν

So the gradient of a scalar function is a one-form.

Higher order tensors

Higher order tensors can be viewed as the direct product of vectors and one-forms. For

example:

Zαβ = XαY β

Zαβ = XαYβ

Zγ
αβ = W γXαYβ

All we are doing here is directly multiplying individual components to form the higher-rank

tensor. For those who recall the outer product that we used in quantum information – this

is similar, but with no conjugation.

So the transformations for the higher-rank tensors follow directly from the transformations

of their “factors.”

Z̄αβ = X̄αȲ β =
∂x̄α

∂xρ
Xρ∂x̄

β

∂xσ
Y σ =

∂x̄α

∂xρ
∂x̄β

∂xσ
Zρσ

Z̄αβ = X̄αȲβ =
∂xρ

∂x̄α
Xρ

∂xσ

∂x̄β
Yσ =

∂xρ

∂x̄α
∂xσ

∂x̄β
Zρσ

Z̄γ
αβ = W̄ γX̄αȲβ =

∂x̄γ

∂xτ
W τ ∂x

ρ

∂x̄α
Xρ

∂xσ

∂x̄β
Yσ =

∂x̄γ

∂xτ
∂xρ

∂x̄α
∂xσ

∂x̄β
Zτ

ρσ
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