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Physics in the 19th Century

• Newtonian Classical Mechanics well established and successful.
• Young’s slit experiments demonstrate the wave nature of light.
• Faraday’s experiments with electromagnetism.
• Maxwell’s equations unifying electromagnetism.  Light is an 

electromagnetic wave with speed c = 3.00 * 10^8 m/s.
• Thermodynamics:  steam engines and the Carnot cycle; Maxwell, 

Gibbs, and Boltzmann pioneer statistical thermodynamics:  
explaining thermodynamics from the perspective of the vas 
numbers of particles making up a system.



Physics circa 1900

• Many physicists believed they were close to a full understanding 
of the fundamentals of the physical universe.

• A few major outstanding problems to solve:
• Is matter really made of “indivisible” atoms?
• Reconciling Newtonian classical mechanics with Maxwell’s 

electromagnetism equations  - relativity and the propagation of 
light.

• Photoelectric effect.
• Blackbody radiation and the ultraviolet catastrophe.



Summary of the Ultraviolet Catastrophe

• Physicists attempted to derive, from first principles, formulas for 
how much EM energy objects emit at a given temperature, and its 
distribution across wavelengths/frequencies.

• Derivation using classical physics worked in the domain of long 
wavelengths/low frequencies – agreed with experiment.

• Classical physics broke down for short wavelengths/high 
frequencies.

• Distribution went to infinity – infinite energy.



Blackbody Radiation

• Matter at temperatures greater than absolute zero emit 
electromagnetic waves (i.e. light).

• Light is emitted as spectrum of frequencies.  Wavelength = 
c/frequency.  Only a small fraction of the EM spectrum is visible 
light.

• A blackbody absorbs and emits all EM frequencies.
• Any frequency reflected by a body is not emitted by it:  If two 

bodies are in thermal equilibrium, they must each transmit to 
other as much energy as they absorb from the other.



Blackbody Box



Blackbody Spectrum



Blackbody Experiments

• Experiments conducted by Wien and Lummer in 1895.
• Measure the spectrum intensity.  Intensity is power (energy per 

unit time) per unit area.
• Intensity = c/4 * energy density (energy per unit volume in the box).
• The c/4 factor follows from a geometric derivation.  The energy 

emitted is the amount, per unit time, reaching the cavity and 
travelling parallel to the normal vector of the cavity area.  The 
energy within a hemispheric annulus at a constant radius, R,  from 
the cavity, and travelling towards the cavity will reach it at the 
same time = R/c.  Because of thermal equivalence principal 
mentioned before, the intensity is the same for all geometries.



Classical Derivation:  Rayleigh-Jeans Law

• Count the wavelength states, the modalities, and add them 
weighted by their average energy.

• The walls of the box are conductive, so the electric field goes to 
zero.

• For a one dimensional situation, the length of the box must an 
integer multiple of half the wavelength.

• Wavelength (λ) = 2L/n, where L is the length of the box and n is a 
positive integer.  Frequency (f) = c/λ = nc/(2L).



Traveling and Standing Waves

• Waves mathematically described using sines and cosines, or 
complex exponentials.

• The wave number (k) = 2ϖ/λ, and the angular frequency w = 2ϖf.
• Right travelling wave equation:  ψ(x, t) = A * exp[i(kx-wt)].
• Every wave traveling right matched by an equal and opposite wave 

travelling left: ψ(x, t) = A * exp[i(kx+wt)].
• Superposition principle:  Total displacement equal to sum of the 

waves: ψ(x, t) = A * (exp[i(kx-wt)] + exp[i(kx+wt)]).
• Re[ψ(x, t)] = 2A * cos(kx) * cos(wt) – a standing wave.



Waves in 3 Dimensions

• Vector k – components in each of the three Cartesian directions, 
→
𝑘𝑘

= (𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦 , 𝑘𝑘𝑧𝑧 ).  𝑘𝑘𝑑𝑑 = 𝜋𝜋𝑛𝑛𝑑𝑑
𝐿𝐿

, as the wave has to go to zero at the 
boundaries in all three dimensions.  Assume a cubic box.

• Energy equals sum of modalities weighted by average energies:  
• 𝐸𝐸 = 2 ∑𝑛𝑛𝑧𝑧=1

∞ ∑𝑛𝑛𝑦𝑦=1
∞ ∑𝑛𝑛𝑥𝑥=1

∞ < 𝜀𝜀{𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧} >
• There is a factor 2 because each modality can come in two 

polarization states.



Changing Coordinates

• We can reasonably assume the energies are isotropic.
• For large n’s, the roughness of the sum of cubes is trivial.

• By the Pythagorean theorem:  →
𝑘𝑘

= 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2 =
𝜋𝜋
𝐿𝐿

𝑛𝑛𝑥𝑥2 + 𝑛𝑛𝑦𝑦2 + 𝑛𝑛𝑧𝑧2 ≈ 𝜋𝜋𝑛𝑛
𝐿𝐿

• Replace the discrete 𝑛𝑛𝑑𝑑’s with a single continuous n as a radial 
coordinate, and perform a volume integral over 1/8 of a sphere, as 
the sum was only over positive n’s.



Spherical Integral

• 𝐸𝐸 = 2∫0
∞∫0

𝜋𝜋
2 ∫0

𝜋𝜋
2 < 𝜀𝜀𝑛𝑛 > 𝑛𝑛2 sin𝜃𝜃 𝑑𝑑𝜑𝜑 𝑑𝑑𝜃𝜃 𝑑𝑑𝑛𝑛

• = 2∫0
∞ < 𝜀𝜀𝑛𝑛 > 𝑛𝑛2𝑑𝑑𝑛𝑛 ∫0

𝜋𝜋
2 sin𝜃𝜃 𝑑𝑑𝜃𝜃 ∫0

𝜋𝜋
2 𝑑𝑑𝜑𝜑 = 𝜋𝜋 ∫0

∞ < 𝜀𝜀𝑛𝑛 > 𝑛𝑛2𝑑𝑑𝑛𝑛
• It remains to figure out < 𝜀𝜀𝑛𝑛 >.



Statistical Mechanics Intro

• Understanding thermodynamics from statistics of enormous 
numbers of particles.

• Pioneered by:  Ludwig Eduard Boltzmann, James Clerk Maxell, and 
Josiah Willard Gibbs in the latter half of the 19th century. 

• For every observable macrostate, there are one or more 
microstates – specific arrangement of particles and energy.

• All possible microstates are equally probable – therefore the 
probabilities of macrostates depend on the number of 
corresponding microstates (Ω).



Introductory Example

• Consider N identical, non-interacting gas molecules in a sealed 
chamber. How many are on the left side (𝑁𝑁𝐿𝐿), and how many are 
on the right side (𝑁𝑁𝑅𝑅), assuming the volumes of both sides are the 
same?

• We can use the binomial distribution.
• There are a total of 2𝑁𝑁possible microstates, as there are 2 

possibilities for each molecule.
• For any macrostate, the total number of molecules on each side, 

the number of microstates is 
𝑁𝑁
𝑁𝑁𝐿𝐿

= 𝑁𝑁
𝑁𝑁𝑅𝑅

= 𝑁𝑁!
𝑁𝑁𝐿𝐿!𝑁𝑁𝑅𝑅!



Introductory Example

• Probability(𝑁𝑁𝐿𝐿, 𝑁𝑁𝑅𝑅) = 𝑁𝑁!
𝑁𝑁𝐿𝐿!𝑁𝑁𝑅𝑅!

∗ 1
2𝑁𝑁

• The probabilities of all molecules being on the left, or all on the 
right side, is the same as any other microstate, but unlikely, 
because macrostates with an even distribution, or close to it, have 
many more corresponding microstates.

• For N = 20, the chance of all molecules being on one specified 
side is less than one a million, compared to a 17.6% chance of 
having 10 on each side, and a 50% chance of there being 9-11 on 
one specified side. 



Introductory Example

• For large N, the distribution of the 
proportion follows a Gaussian 
“bell curve”, with a mean of ½ 
and a standard deviation �1 (2 𝑁𝑁).

• Approximately 68% probability of 
being within 1 standard deviation 
of the mean, 95% probability of 
being within 2 standard 
deviations of the mean, and 
almost always within 3 standard 
deviations of the mean.

• As N increases, the distribution 
becomes more narrow.



Maximum Entropy Principle

• For macroscopic objects, N is typically on the order of Avogadro's 
number:  6.022 * 10^23.

• Only macrostates at, or very close to, the maximum multiplicity 
have any appreciable probability of occurring.

• Entropy was defined by Boltzmann as 𝑆𝑆 = 𝑘𝑘𝐵𝐵 𝐿𝐿𝑁𝑁[Ω], where Ω is 
the multiplicity and 𝑘𝑘𝐵𝐵 is the Boltzmann constant ≈ 

• 1.381 *10^(-23) J/K = 8.617 * 10^(-5) eV/K.
• Macroscopic systems in thermal equilibrium are always in a state 

of maximum entropy.



Maximum Entropy Principle

• Logarithm converts very large numbers (i.e. 10^(10^23)) into merely 
large numbers (i.e. 10^23).

• Entropy is additive, whereas multiplicity is multiplicative – doubling the 
system doubles the entropy, whereas multiplicity is squared.

• The Boltzmann constant relates entropy to energy and temperature.
• 𝛼𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

= 1
𝑇𝑇

, d𝑆𝑆 = 𝑑𝑑𝑑𝑑
𝑇𝑇

, where U is internal energy, Q is heat input, and T is 
temperature, with zero being absolute zero (i.e. Kelvin scale).

• Second law of thermodynamics – entropy of an isolated system 
increase with time.

• Heat flows from hot to cold because the hot object loses less entropy 
than the cold object gains.



Ludwig Eduard Boltzmann



Ludwig Eduard Boltzmann

• Austrian mathematician and physicist (1844-1906).
• One of the founders of statistical mechanics.
• Studied under Stefan, who introduced him to Maxwell’s physics.
• Professor at the universities of Graz and Vienna.
• Supported Henriette von Aigentler’s studies of mathematics and 

physics when she faced resistance for being a women – married 
her – had three daughters and a son.

• Mentored Paul Ehrenfet and Elise “Lise” Meitner – female physicist 
who later co-discovered nuclear fission.



Ludwig Eduard Boltzmann

• Popular lecturer on physics and philosophy, lectured at Berkley in 
1905, described his philosophy as materialism.

• Conflict with colleagues, particularly Ernst Mach, and many 
German philosophers, who rejected the existence of atoms.

• Mental health problems:  depression, possibly bipolar.
• Committed suicide by hanging in 1906 (aged 62), believing his 

life’s work had been for naught.  Completely vindicated a few 
years later.

• His entropy equation:  S = k * log W written on his grave.



Boltzmann Statistics

• Imagine a system, say a single particle, in thermal equilibrium 
with a much larger reservoir.  Only energy is exchangeable.

• Let the particle have an energy of 𝜀𝜀0when in state 𝑠𝑠0, and an 
energy of 𝜀𝜀1when in state 𝑠𝑠1.

• Prob(𝑠𝑠1)/Prob(𝑠𝑠0) = exp[-(𝜀𝜀1 - 𝜀𝜀0)/(𝑘𝑘𝐵𝐵T)].
• Prob(𝑠𝑠1)/Prob(𝑠𝑠0) = Ω𝑅𝑅1/ Ω𝑅𝑅0= exp[(𝑆𝑆𝑅𝑅1- 𝑆𝑆𝑅𝑅0)/ 𝑘𝑘𝐵𝐵]  

• ≈ exp 1
𝑘𝑘𝐵𝐵

∗ 𝑑𝑑𝛼𝛼𝑅𝑅
𝑑𝑑𝐸𝐸𝑅𝑅

∗ − 𝜀𝜀1 − 𝜀𝜀0 = exp 1
𝑘𝑘𝐵𝐵

∗ 1
𝑇𝑇
∗ − 𝜀𝜀1 − 𝜀𝜀0



Boltzmann Statistics

• To convert to absolute probabilities, we need to normalize:
• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = ⁄exp[ ⁄−𝜀𝜀𝑠𝑠 𝑘𝑘𝐵𝐵𝑇𝑇] 𝑍𝑍, Z = ∑𝑠𝑠 exp[ ⁄−𝜀𝜀𝑠𝑠 𝑘𝑘𝐵𝐵𝑇𝑇], since the 

total probability must sum to one.
• Adding a constant to all energies has no effect on the 

probabilities, as it would cancel out.
• Comports with intuition – nature tends to run downhill, seeking 

lower energy states – so high energy states should be relatively 
rare.

• Sum is over states.  Degeneracy, states with same energy, need to 
be taken into account.  Degeneracy often varies with energy.



Boltzmann Statistics –
Maximization Derivation

• Stirling’s approximation:  for large N, N! ≈ 𝑁𝑁𝑁𝑁 𝑒𝑒−𝑁𝑁 2𝜋𝜋𝑁𝑁, and 
𝐿𝐿𝑁𝑁 𝑁𝑁! ≈ 𝑁𝑁 𝐿𝐿𝑁𝑁 𝑁𝑁 − 𝑁𝑁.

• Entropy can be expressed as 𝑆𝑆 = −𝑘𝑘𝐵𝐵 ∗ ∑𝑠𝑠 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 ∗ 𝐿𝐿𝑁𝑁 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 .
• Maximize entropy in terms of the state probabilities, with 

constraints of the probabilities adding up to one, and expected 
energy being constant:  

• ∑𝑠𝑠 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 = 1 and ∑𝑠𝑠 𝜀𝜀𝑠𝑠 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 = ̅𝜀𝜀.
• Apply the method of Lagrange multipliers for constrained 

optimization.
• Maximization probabilities are the Boltzmann factors.



Partition Function

• Z = ∑𝑠𝑠 exp[ ⁄−𝜀𝜀𝑠𝑠 𝑘𝑘𝐵𝐵𝑇𝑇] , the sum of the Boltzmann factors, is called 
the partition function.  Depends on temperature.

• For convenience, rewrite as Z = ∑𝑠𝑠 exp[−𝛽𝛽𝜀𝜀𝑠𝑠], where 
• β = ⁄1 𝑘𝑘𝐵𝐵𝑇𝑇 .
• Derivatives of the partition function with respect to β can be used 

to calculate the average and other moments for energy.

• ̅𝜀𝜀 = −𝛼𝛼𝐿𝐿𝑁𝑁 𝑍𝑍
𝛼𝛼𝛼𝛼

= − 1
𝑍𝑍
𝛼𝛼𝑍𝑍
𝛼𝛼𝛼𝛼

= ∑𝑠𝑠 𝜀𝜀𝑠𝑠 ∗ ⁄exp −𝛽𝛽𝜀𝜀𝑠𝑠 𝑍𝑍 = ∑𝑠𝑠 𝜀𝜀𝑠𝑠 ∗ 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠



Combining Partition Functions

• N distinguishable particles:  𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∏𝑖𝑖=1
𝑁𝑁 𝑍𝑍𝑖𝑖

• N indistinguishable particles:  ⁄𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≈ ∏𝑖𝑖=1
𝑁𝑁 𝑍𝑍𝑖𝑖 𝑁𝑁!

• Factorial corrects for permutations, but the formula is 
approximate because it ignores the possibility of multiple 
particles being in the same state.

• Valid approximation for most classical situations which are not 
“too dense” (ex. ideal gas).  The number of possible states, which 
are on the Planck scale, is much larger than the number of 
particles, so the probability of multiple particles in the same state 
is negligible.  Different for quantum systems.



Maxwell-Boltzmann Distribution

• Distribution of speed of 
particles gas.

• Example graph is for one 
million oxygen molecules at      
-100, 20 and 600 degrees 
Celsius.



Maxwell-Boltzmann Distribution

• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣1 < 𝑣𝑣 < 𝑣𝑣2 = 1
𝐶𝐶 ∫𝑣𝑣1

𝑣𝑣2 𝑔𝑔 𝑣𝑣 ∗ exp −𝛽𝛽𝐸𝐸𝑡𝑡𝑡𝑡(𝑣𝑣) 𝑑𝑑𝑣𝑣

• 𝐸𝐸𝑡𝑡𝑡𝑡 𝑣𝑣 = �𝑚𝑚𝑣𝑣2
2 - translation kinetic energy – depends on the 

square magnitude of velocity.
• 𝛽𝛽 = ⁄1 (𝑘𝑘𝐵𝐵𝑇𝑇)
• 𝑔𝑔 𝑣𝑣 = 4𝜋𝜋𝑣𝑣2 is the degeneracy factor – surface area of a sphere 

since a velocity vector – with a fixed magnitude - can point in any 3 
dimensional direction.

• 𝐶𝐶 = ∫0
∞𝑔𝑔 𝑣𝑣 ∗ exp −𝛽𝛽𝐸𝐸𝑡𝑡𝑡𝑡(𝑣𝑣) 𝑑𝑑𝑣𝑣 is the normalizing factor.



Integration Method

• 𝐼𝐼 𝛼𝛼, 𝑝𝑝 = ∫0
∞𝑥𝑥2𝑝𝑝 ∗ 𝑒𝑒−𝛼𝛼𝑥𝑥2𝑑𝑑𝑥𝑥 - depends on 𝛼𝛼 and p, 𝛼𝛼 > 0

• Consider 𝐼𝐼 𝛼𝛼, 0 = ∫0
∞ 𝑒𝑒−𝛼𝛼𝑥𝑥2𝑑𝑑𝑥𝑥.

• 𝐼𝐼 𝛼𝛼, 0 = 1
2
∗ ∫−∞

∞ 𝑒𝑒−𝛼𝛼𝑥𝑥2𝑑𝑑𝑥𝑥 = 1
2 ∫−∞

∞ 𝑒𝑒−𝛼𝛼𝑥𝑥2𝑑𝑑𝑥𝑥
2

=
1
2 ∫−∞

∞ 𝑒𝑒−𝛼𝛼𝑥𝑥2𝑑𝑑𝑥𝑥 ∗ ∫−∞
∞ 𝑒𝑒−𝛼𝛼𝑦𝑦2𝑑𝑑𝑦𝑦 = 1

2 ∫−∞
∞ ∫−∞

∞ 𝑒𝑒−𝛼𝛼 𝑥𝑥2+𝑦𝑦2 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

• Change to polar coordinates: 𝐼𝐼 𝛼𝛼, 0 = 1
2 ∫0

2𝜋𝜋 ∫0
∞ 𝑒𝑒−𝛼𝛼𝑡𝑡2𝑃𝑃𝑑𝑑𝑃𝑃𝑑𝑑𝜃𝜃



Integration Method

• 𝐼𝐼 𝛼𝛼, 0 = 1
2

2𝜋𝜋 ∗ ⁄1 (2𝛼𝛼) = 1
2

𝜋𝜋
𝛼𝛼

• For integer p > 0, take derivatives with respect to 𝛼𝛼.

• 𝐼𝐼 𝛼𝛼, 𝑝𝑝 = ∫0
∞𝑥𝑥2𝑝𝑝 ∗ 𝑒𝑒−𝛼𝛼𝑥𝑥2𝑑𝑑𝑥𝑥 = ∫0

∞(−1)𝑝𝑝 𝑑𝑑𝑝𝑝(𝑒𝑒−𝛼𝛼𝑥𝑥2)
𝑑𝑑𝛼𝛼𝑝𝑝

• = (−1)𝑝𝑝 𝑑𝑑𝑝𝑝

𝑑𝑑𝛼𝛼𝑝𝑝 ∫0
∞ 𝑒𝑒−𝛼𝛼𝑥𝑥2𝑑𝑑𝑥𝑥 = (−1)𝑝𝑝 𝑑𝑑𝑝𝑝𝐼𝐼(𝛼𝛼,0)

𝑑𝑑𝛼𝛼𝑝𝑝

• = 𝜋𝜋
2
∗
∏𝑗𝑗=1
𝑝𝑝 2𝑗𝑗−1

2𝑝𝑝
∗ 𝛼𝛼( ⁄−(1+2𝑝𝑝) 2), 𝑝𝑝 = {1, 2, … }



Maxwell-Boltzmann Distribution Continued

• 𝐶𝐶 = ∫0
∞𝑔𝑔 𝑣𝑣 ∗ exp −𝛽𝛽𝐸𝐸𝑡𝑡𝑡𝑡 𝑣𝑣 𝑑𝑑𝑣𝑣 =

• ∫0
∞(4𝜋𝜋𝑣𝑣2) ∗ exp − ⁄𝑚𝑚𝑣𝑣2 (2𝑘𝑘𝐵𝐵𝑇𝑇) 𝑑𝑑𝑣𝑣 = 4𝜋𝜋 ∗ 𝜋𝜋

2
∗ 1

2
∗ 2𝑘𝑘𝐵𝐵𝑇𝑇

𝑚𝑚

⁄3 2

• = 2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
𝑚𝑚

⁄3 2

• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣1 < 𝑣𝑣 < 𝑣𝑣2 =
𝑚𝑚

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

⁄3 2
∫𝑣𝑣1
𝑣𝑣2(4𝜋𝜋𝑣𝑣2) ∗ exp − ⁄𝑚𝑚𝑣𝑣2 (2𝑘𝑘𝐵𝐵𝑇𝑇) 𝑑𝑑𝑣𝑣



Average Energy of Monoatomic Gas

• Monoatomic gas (ex. Helium) – only energy is translational

• < 𝐾𝐾𝐸𝐸 > = 𝑚𝑚
(2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇)

⁄3 2
∫0
∞ 𝑚𝑚𝑣𝑣2

2
∗ 4𝜋𝜋𝑣𝑣2 ∗ exp − ⁄𝑚𝑚𝑣𝑣2 2𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑣𝑣

• = 𝑚𝑚
(2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇)

⁄3 2
∗ 𝑚𝑚

2
∗ 4𝜋𝜋 ∗ 𝜋𝜋

2
∗ 3

4
∗ 2𝑘𝑘𝐵𝐵𝑇𝑇

𝑚𝑚

⁄5 2
= ⁄3𝑘𝑘𝐵𝐵𝑇𝑇 2

• Root mean square velocity:   𝑚𝑚𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
2

2
= ⁄3𝑘𝑘𝐵𝐵𝑇𝑇 2 , 𝑣𝑣𝑡𝑡𝑚𝑚𝑠𝑠 = ⁄3𝑘𝑘𝐵𝐵𝑇𝑇 𝑚𝑚



Equipartition Theorem

• Energy is equally distributed among degrees of freedom.
• Break down the integral into Cartesian coordinates:
• < 𝐾𝐾𝐸𝐸 > =
1
𝐶𝐶 ∫−∞

∞ ∫−∞
∞ ∫−∞

∞ 𝑚𝑚(𝑣𝑣𝑥𝑥
2+𝑣𝑣𝑦𝑦

2+𝑣𝑣𝑧𝑧
2)

2
∗ exp − ⁄𝑚𝑚(𝑣𝑣𝑥𝑥

2 + 𝑣𝑣𝑦𝑦
2 + 𝑣𝑣𝑧𝑧

2) 2𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑣𝑣𝑥𝑥𝑑𝑑𝑣𝑣𝑦𝑦𝑑𝑑𝑣𝑣𝑧𝑧
• 𝐶𝐶 = ∫−∞

∞ ∫−∞
∞ ∫−∞

∞
exp − ⁄𝑚𝑚(𝑣𝑣𝑥𝑥

2 + 𝑣𝑣𝑦𝑦
2 + 𝑣𝑣𝑧𝑧

2) 2𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑣𝑣𝑥𝑥𝑑𝑑𝑣𝑣𝑦𝑦𝑑𝑑𝑣𝑣𝑧𝑧
• Consider the x component, the others follow by symmetry:
• < 𝐾𝐾𝐸𝐸𝑥𝑥 > =
1
𝐶𝐶 ∫−∞

∞ ∫−∞
∞ ∫−∞

∞ 𝑚𝑚𝑣𝑣𝑥𝑥
2

2
∗ exp − ⁄𝑚𝑚(𝑣𝑣𝑥𝑥

2 + 𝑣𝑣𝑦𝑦
2 + 𝑣𝑣𝑧𝑧

2) 2𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑣𝑣𝑥𝑥𝑑𝑑𝑣𝑣𝑦𝑦𝑑𝑑𝑣𝑣𝑧𝑧



Equipartition Theorem

• Rearrange the integrals:

• < 𝐾𝐾𝐸𝐸𝑥𝑥 > = 1
𝐶𝐶
∗ 𝑚𝑚

2
∗

2∫0
∞𝑣𝑣𝑥𝑥2 ∗ exp −𝑚𝑚𝑣𝑣𝑥𝑥2

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑣𝑣𝑥𝑥 ∫−∞

∞ exp −𝑚𝑚𝑣𝑣𝑦𝑦2

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑣𝑣𝑦𝑦 ∫−∞

∞ exp −𝑚𝑚𝑣𝑣𝑧𝑧2

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑣𝑣𝑧𝑧

• And 𝐶𝐶 =
2∫0

∞ exp −𝑚𝑚𝑣𝑣𝑥𝑥2

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑣𝑣𝑥𝑥 ∫−∞

∞ exp −𝑚𝑚𝑣𝑣𝑦𝑦2

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑣𝑣𝑦𝑦 ∫−∞

∞ exp −𝑚𝑚𝑣𝑣𝑧𝑧2

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑣𝑣𝑧𝑧

• Integrals over y and z cancel out.



Equipartition Theorem

• < 𝐾𝐾𝐸𝐸𝑥𝑥 > = 𝑚𝑚
2
∗ �∫0

∞𝑣𝑣𝑥𝑥2 ∗ exp −𝑚𝑚𝑣𝑣𝑥𝑥2

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑣𝑣𝑥𝑥 ∫0

∞ exp −𝑚𝑚𝑣𝑣𝑥𝑥2

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑣𝑣𝑥𝑥

• = 𝑚𝑚
2
∗ �𝜋𝜋

2
∗ 1

2
∗ 2𝑘𝑘𝐵𝐵𝑇𝑇

𝑚𝑚

⁄3 2 𝜋𝜋
2
∗ 2𝑘𝑘𝐵𝐵𝑇𝑇

𝑚𝑚

⁄1 2
= 𝑚𝑚

4
∗ 2𝑘𝑘𝐵𝐵𝑇𝑇

𝑚𝑚
=

1
2
𝑘𝑘𝐵𝐵𝑇𝑇 , same for < 𝐾𝐾𝐸𝐸𝑦𝑦 > and < 𝐾𝐾𝐸𝐸𝑧𝑧 > .

• Each degree of freedom has an average energy of 1
2
𝑘𝑘𝐵𝐵𝑇𝑇 .

• Applies more generally to where 𝐸𝐸 = ∑𝑗𝑗 𝑐𝑐𝑗𝑗𝑞𝑞𝑗𝑗2, where the q’s are 
canonical coordinates (position, momentum, angular 
momentum, etc..) and the c’s are constant scalers.



Applications of the Equipartition Theorem

• Diatomic gases (ex. Nitrogen, Oxygen) – three translation degrees 
of freedom and two rotational degrees of freedom.

• Note:  If molecules were truly mechanical there would be three 
rotational degrees of freedom, but one is omitted because of 
quantum mechanical reasons.

• < 𝐾𝐾𝐸𝐸 > = < 𝐾𝐾𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 > + < 𝐾𝐾𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 > =

• 3 1
2
𝑘𝑘𝐵𝐵𝑇𝑇 + 2 1

2
𝑘𝑘𝐵𝐵𝑇𝑇 = 5

2
𝑘𝑘𝐵𝐵𝑇𝑇



Applications of the Equipartition Theorem

• Harmonic oscillator – 2 degrees of freedom

• 𝐸𝐸 = 𝑚𝑚𝑣𝑣2

2
+ 𝑘𝑘𝑥𝑥2

2
, < 𝐸𝐸 > = 2 1

2
𝑘𝑘𝐵𝐵𝑇𝑇 = 𝑘𝑘𝐵𝐵𝑇𝑇

• An electro-magnetic wave can be analogized to a harmonic 
oscillator.

• Not simple because the electric and magnetic field are not 
independent.



A Sketch of the EM Wave Hamiltonian

• Electromagnetic energy density: 𝜀𝜀0
2
𝐸𝐸2 + 1

2𝜇𝜇0
𝐵𝐵2

• Where 𝐸𝐸 and 𝐵𝐵 are the electric and magnetic fields respectively, 
and 𝜀𝜀0 and 𝜇𝜇0 are the electric and magnetic permittivity constants
respectively.

• In the absence of electric charges or currents, Maxwell’s 
electromagnetism equations can be written as:

• →
𝐵𝐵

= ∇ 𝑋𝑋 →
𝐴𝐴

, and →
𝐸𝐸

= −1
𝑐𝑐

𝛼𝛼→
𝐴𝐴
𝛼𝛼𝑡𝑡

, where →
𝐴𝐴

is the vector potential, and 
c is the speed of light = ⁄1 𝜀𝜀0𝜇𝜇0



A Sketch of the EM Wave Hamiltonian

• and →
𝐴𝐴

satisfies the standard wave equation:  

• ∇2 →
𝐴𝐴
− 1

𝑐𝑐2
𝛼𝛼2→

𝐴𝐴
𝛼𝛼𝑡𝑡2

= 0

• →
𝐴𝐴

can be decomposed into a Fourier series, with coefficients of 
the form:  𝑄𝑄λ + 𝑖𝑖𝑃𝑃λ, where λ is the wavelength, the Hamiltonian for 
each wavelength is of the form:  𝑄𝑄λ

2 + 𝑃𝑃λ
2, and the total 

Hamiltonian involves a sum over the wavelengths.
• Q and P are a canonical Hamiltonian parameter pair, analogous to 

position and momentum.



A Sketch of the EM Wave Hamiltonian

• In the Hamiltonian formulation:  

• 𝑑𝑑𝑑𝑑λ
𝑑𝑑𝑡𝑡

= 𝛼𝛼𝛼𝛼
𝛼𝛼𝑃𝑃λ

, and 𝑑𝑑𝑃𝑃λ
𝑑𝑑𝑡𝑡

= − 𝛼𝛼𝛼𝛼
𝛼𝛼𝑑𝑑λ

, where H is the Hamiltonian.

• Satisfies Maxwell’s equations and the wave equation.
• The form of the EM wave Hamiltonian for a modality is identical to 

a harmonic oscillator:  one position term squared and one 
corresponding momentum term squared.  

• Can apply the equipartition theorem result for a harmonic 
oscillator to an EM wave modality.  Average energy = 𝑘𝑘𝐵𝐵𝑇𝑇.



Blackbody Spectrum – Classical Derivation

• Recall: 𝐸𝐸 = 𝜋𝜋 ∫0
∞ < 𝜀𝜀𝑛𝑛 > 𝑛𝑛2𝑑𝑑𝑛𝑛.

• Substitute < 𝜀𝜀𝑛𝑛 > = 𝑘𝑘𝐵𝐵𝑇𝑇 from the equipartition theorem and 
harmonic oscillator analogy.

• 𝐸𝐸 = ∫0
∞𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇 ∗ 𝑛𝑛2𝑑𝑑𝑛𝑛

• Change variables to frequency or wavelength for a more physical 
meaning.



Blackbody Spectrum – Classical Derivation

• Frequency (f) = nc/(2L), df = c/(2L) * dn, n = 2Lf/c, dn = 2L/c * df

• 𝐸𝐸 = 𝐿𝐿3 ∫0
∞ ⁄8𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇 𝑐𝑐3 ∗ 𝑓𝑓2𝑑𝑑𝑓𝑓

• Wavelength (λ) = 2L/n, dλ = ⁄−2𝐿𝐿 𝑛𝑛2 𝑑𝑑𝑛𝑛 , n = 2L/λ, 
• 𝑑𝑑𝑛𝑛 = − ⁄⁄2𝐿𝐿 λ 2 2𝐿𝐿 ∗ 𝑑𝑑λ = −2𝐿𝐿 ∗ ⁄𝑑𝑑λ λ2

• 𝐸𝐸 = 𝐿𝐿3 ∫∞
0 8𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇 ∗ ⁄1 λ4 ∗ (−𝑑𝑑λ) = 𝐿𝐿3 ∫0

∞8𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇 ∗ ⁄1 λ4 ∗ 𝑑𝑑λ



Blackbody Spectrum – Classical Derivation

• Note: 𝐿𝐿3 is the volume, so factoring it out gives us the energy 
density.

• Recall Intensity = c/4 * energy density.

• 𝐼𝐼 = ∫0
∞ ⁄2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇 𝑐𝑐2 ∗ 𝑓𝑓2𝑑𝑑𝑓𝑓 = ∫0

∞ 2𝜋𝜋𝑐𝑐𝑘𝑘𝐵𝐵𝑇𝑇 ∗ ⁄1 λ4 ∗ 𝑑𝑑λ
• Agrees well with experiment for long wavelengths/low 

frequencies.



Ultraviolet Catastrophe

• For short wavelengths/high frequencies – ultraviolet, beyond 
visible light - the formula increases without bound.

• Integral is not convergent.
• Real objects are not blasting out an infinite of energy in the  form 

of gamma rays.
• Classical physics inadequate for short wavelengths/high 

frequencies.



Enter Max Planck

• German theocratical physicist 
(1858- 1947)

• Reluctant revolutionary.
• The ultraviolet catastrophe was 

such an important and vexing 
problem he decided it was 
necessary to make a 
fundamental change in the 
understanding of physics.

• Quantize energy – energy comes 
in discrete packets (quanta).

• Won the 1918 Nobel Prize in 
Physics for quanta.



Quantization of Energy

• For a given modality (n), let all energies be an integer multiple of 
some underlying energy.  

• 𝜖𝜖𝑛𝑛,𝑗𝑗 = 𝑗𝑗 ∗ 𝜖𝜖𝑛𝑛,1, 𝑗𝑗 = {0,1, 2, … }
• Changes  the average energy calculation – replace integrals with 

sigmas.

• < 𝜀𝜀𝑛𝑛 > = �∑𝑗𝑗=0∞ 𝜀𝜀𝑛𝑛,𝑗𝑗 ∗ exp[−𝛽𝛽𝜀𝜀𝑛𝑛,𝑗𝑗] ∑𝑗𝑗=0∞ exp[−𝛽𝛽𝜀𝜀𝑛𝑛,𝑗𝑗]

• = �∑𝑗𝑗=0∞ 𝑗𝑗𝜖𝜖𝑛𝑛,1 ∗ exp[−𝛽𝛽 𝑗𝑗𝜖𝜖𝑛𝑛,1 ] ∑𝑗𝑗=0∞ exp[−𝛽𝛽 𝑗𝑗𝜖𝜖𝑛𝑛,1 ]



Quantization of Energy

• For the denominator:  ∑𝑗𝑗=0∞ exp[−𝛽𝛽 𝑗𝑗𝜖𝜖𝑛𝑛,1 ] = ∑𝑗𝑗=0∞ exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1] 𝑗𝑗

• = ⁄1 1 − exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1] , by the formula for a geometric sum.
• For the numerator: ∑𝑗𝑗=0∞ 𝑗𝑗𝜖𝜖𝑛𝑛,1 ∗ exp[−𝛽𝛽 𝑗𝑗𝜖𝜖𝑛𝑛,1 ]

• = ∑𝑗𝑗=0∞ ⁄−𝑑𝑑 exp[−𝛽𝛽 𝑗𝑗𝜖𝜖𝑛𝑛,1 ] 𝑑𝑑𝛽𝛽 = �−𝑑𝑑 ∑𝑗𝑗=0∞ exp[−𝛽𝛽 𝑗𝑗𝜖𝜖𝑛𝑛,1 ] 𝑑𝑑𝛽𝛽

• = ⁄−𝑑𝑑 ⁄1 1 − exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1] 𝑑𝑑𝛽𝛽

• = ⁄1 1 − exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1] 2 ∗ 𝜀𝜀𝑛𝑛,1 ∗ exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1]



Quantization of Energy

• < 𝜀𝜀𝑛𝑛 > =
�⁄𝜀𝜀𝑛𝑛,1 ∗ exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1] 1 − exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1] 2] ⁄1 1 − exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1]

• = �𝜀𝜀𝑛𝑛,1 ∗ exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1] 1 − exp[−𝛽𝛽𝜀𝜀𝑛𝑛,1] = �𝜀𝜀𝑛𝑛,1 exp 𝜀𝜀𝑛𝑛,1
𝑘𝑘𝐵𝐵𝑇𝑇

− 1

• If 𝜀𝜀𝑛𝑛,1 is small: < 𝜀𝜀𝑛𝑛 > ≈ �𝜀𝜀𝑛𝑛,1 1 + 𝜀𝜀𝑛𝑛,1
𝑘𝑘𝐵𝐵𝑇𝑇

− 1 = 𝑘𝑘𝐵𝐵𝑇𝑇, classical 
limit.

• If 𝜀𝜀𝑛𝑛,1 is large: < 𝜀𝜀𝑛𝑛 > → 0 𝑎𝑎𝑠𝑠 𝜀𝜀𝑛𝑛,1 → ∞, as the exponential grows 
faster than the linear term.



Quantization of Energy

• For the blackbody spectrum, we want: < 𝜀𝜀𝑛𝑛 > ≈ 𝑘𝑘𝐵𝐵𝑇𝑇 for long 
wavelengths/low frequencies, and < 𝜀𝜀𝑛𝑛 > → 0 for short 
wavelengths/high frequencies.

• Set 𝜀𝜀𝑛𝑛,1 = ℎ𝑓𝑓 = ⁄ℎ𝑐𝑐 λ.
• h is called the Plank constant ≈ 6.626 * 10^(-34) J*s 
• = 4.136 * 10^(-15) eV/Hz.
• Quanta of light called photons.

• < 𝜀𝜀𝑛𝑛 > = �ℎ𝑓𝑓 exp ℎ𝑓𝑓
𝑘𝑘𝐵𝐵𝑇𝑇

− 1 = ℎ𝑐𝑐
λ
∗ �1 exp 1

𝑘𝑘𝐵𝐵𝑇𝑇
∗ ℎ𝑐𝑐

λ
− 1 .



Plank’s Blackbody Spectrum

• 𝐼𝐼 = ∫0
∞ ⁄2𝜋𝜋 𝑐𝑐2 ∗ �ℎ𝑓𝑓 exp ℎ𝑓𝑓

𝑘𝑘𝐵𝐵𝑇𝑇
− 1 ∗ 𝑓𝑓2𝑑𝑑𝑓𝑓 =

∫0
∞ ⁄2𝜋𝜋ℎ 𝑐𝑐2 ∗ �𝑓𝑓3 exp ℎ𝑓𝑓

𝑘𝑘𝐵𝐵𝑇𝑇
− 1 ∗ 𝑑𝑑𝑓𝑓

= ∫0
∞ 2𝜋𝜋𝑐𝑐 ∗ ℎ𝑐𝑐

λ
∗ �1 exp 1

𝑘𝑘𝐵𝐵𝑇𝑇
∗ ℎ𝑐𝑐

λ
− 1 ∗ ⁄1 λ4 ∗ 𝑑𝑑λ

= �
0

∞
2𝜋𝜋ℎ𝑐𝑐2 ∗ �1 exp

1
𝑘𝑘𝐵𝐵𝑇𝑇

∗
ℎ𝑐𝑐
λ

− 1 ∗ ⁄1 λ5 ∗ 𝑑𝑑λ



Plank’s Blackbody Spectrum

• In terms of quantas: ε = ℎ𝑓𝑓, dϵ = ℎ ∗ 𝑑𝑑𝑓𝑓, 𝑓𝑓 = 𝜀𝜀
ℎ

,𝑑𝑑𝑓𝑓 = 𝑑𝑑𝑑𝑑
ℎ

• 𝐼𝐼 = ∫0
∞ ⁄2𝜋𝜋 ℎ3𝑐𝑐2 ∗ �𝜀𝜀3 exp 𝜀𝜀

𝑘𝑘𝐵𝐵𝑇𝑇
− 1 ∗ 𝑑𝑑𝜀𝜀

• No longer explodes for short wavelengths/high frequencies.
• To evaluate the integral, convert to a dimensionless quantity:  

• 𝛾𝛾 = 𝜀𝜀
𝑘𝑘𝐵𝐵𝑇𝑇

,𝑑𝑑𝛾𝛾 = 𝑑𝑑𝜀𝜀
𝑘𝑘𝐵𝐵𝑇𝑇

, 𝜀𝜀 = 𝑘𝑘𝐵𝐵𝑇𝑇𝛾𝛾,𝑑𝑑𝜀𝜀 = 𝑘𝑘𝐵𝐵𝑇𝑇 ∗ 𝑑𝑑𝛾𝛾

• 𝐼𝐼 = �2𝜋𝜋 𝑘𝑘𝐵𝐵𝑇𝑇 4 ℎ3𝑐𝑐2 ∗ ∫0
∞ ⁄𝛾𝛾3 exp 𝛾𝛾 − 1 ∗ 𝑑𝑑𝛾𝛾



Plank’s Blackbody Spectrum



Plank’s Blackbody Spectrum

• ∫0
∞ ⁄𝛾𝛾𝑝𝑝 exp 𝛾𝛾 ± 1 ∗ 𝑑𝑑𝛾𝛾 , 𝑝𝑝 = {0, 1, 2, … } difficult to evaluate for p 

> 0.  There is a method for analytically solving it for an odd p.  Even 
p’s require numeric integration.

• For p = 3, ∫0
∞ ⁄𝛾𝛾3 exp 𝛾𝛾 − 1 ∗ 𝑑𝑑𝛾𝛾 = 𝜋𝜋4

15
.

• 𝐼𝐼 = �2𝜋𝜋5𝑘𝑘𝐵𝐵4 15ℎ3𝑐𝑐2 ∗ 𝑇𝑇4 = σ𝑇𝑇4, where σ is the Stefan-
Boltzmann constant.

• 𝜎𝜎 ≈ 5.670 ∗ 10−8 𝑊𝑊
𝑚𝑚2𝐾𝐾4

, radiation output proportional to the fourth 
power of temperature.



Plank’s Blackbody Spectrum

• Excellent match to experimental results.
• Spectrum peaks for γ ≈ 2.82.
• The peak for energy is at 𝜀𝜀 ≈ 2.82𝑘𝑘𝐵𝐵𝑇𝑇.
• The peak for frequency is at 𝑓𝑓 ≈ ⁄2.82𝑘𝑘𝐵𝐵𝑇𝑇 ℎ.
• The peak for wavelength is at λ ≈ ⁄𝑃𝑃 𝑇𝑇, Wien’s law.
• 𝑃𝑃 ≈ 2.898 ∗ 10−3 𝑚𝑚𝐾𝐾, called Wien’s displacement constant.
• Higher temperatures mean more power per area, higher peak 

energies and frequencies, and shorter peak wavelengths.



Plank’s Blackbody Spectrum With Wien’s Law



Example:  Solar Radiation



Example:  Solar Radiation

• The sun is approximately a spherical blackbody.
• Surface Temperature = 5772 K.
• Radius = 6.96 * 10^8 m (109 times Earth’s (6.37 * 10^6 m)).
• Surface Area = 4π * (radius)^2 = 6.09 * 10^18 m^2 (12,000 times 

Earth’s).
• Earth-Sun Distance = 1.50 *10^11 m (1 AU by definition).

• Luminosity = 𝜎𝜎𝑇𝑇4 ∗ 𝑠𝑠𝑠𝑠𝑃𝑃𝑓𝑓𝑎𝑎𝑐𝑐𝑒𝑒 𝑎𝑎𝑃𝑃𝑒𝑒𝑎𝑎 = 5.670 ∗ 10−8 𝑊𝑊
𝑚𝑚2𝐾𝐾4

∗
5772 𝐾𝐾 4 ∗ 6.09 ∗ 1018 𝑚𝑚2 = 3.83 ∗ 1026𝑊𝑊



Example:  Solar Radiation

• Intensity at Earth orbit = Luminosity/(4π * (Earth-Sun distance)^2)
= �3.83 ∗ 1026𝑊𝑊 4𝜋𝜋 ∗ 1.50 ∗ 1011 𝑚𝑚 2 = 1.36 ∗ 103 𝑊𝑊

𝑚𝑚2.

• Solar radiation received by the Earth = Intensity at Earth * cross 
sectional area = 1.36 ∗ 103 𝑊𝑊

𝑚𝑚2 ∗ 𝜋𝜋 6.37 ∗ 106 𝑚𝑚 2 =
1.73 ∗ 1017 𝑊𝑊

• Peak frequency = ⁄2.82𝑘𝑘𝐵𝐵𝑇𝑇 ℎ =
�2.82 ∗ 1.381 ∗ 10−23 𝐽𝐽

𝐾𝐾
∗ 5772 K 6.626 ∗ 10−34 J∗s =

3.39 ∗ 1014 𝐻𝐻𝐻𝐻



Example:  Solar Radiation

• Peak Energy for Photons = 2.82𝑘𝑘𝐵𝐵𝑇𝑇 = 2.82 ∗ 8.617 ∗ 10−5 𝑒𝑒𝑒𝑒
𝐾𝐾

∗
5772 𝐾𝐾 = 1.40 𝑒𝑒𝑒𝑒.

• Peak Wavelength = ⁄𝑃𝑃 𝑇𝑇 = ⁄2.898 ∗ 10−3 𝑚𝑚𝐾𝐾 5772 𝐾𝐾 = 5.02 ∗
10−7 𝑚𝑚 = 502 𝑛𝑛𝑚𝑚 (598 tera Hz, 2.47 eV for photons) – green light, 
close to blue.



Example:  Solar Radiation

• Sunlight in space approximately 50% infrared, 40% visible (750-400 
nm), and 10% ultraviolet. 

• Light at the Earth’s surface affected by axial tilt, time of day, 
atmospheric conditions, and scattering – short wavelengths more 
readily scattered – blue sky.

• Makes sense humans and other animals evolved optics tuned for light 
where the sun’s spectrum peaks.

• Short ultraviolet mostly blocked by the atmosphere, particularly the 
ozone layer – ionization effects and health hazard.



Example:  Cosmic Microwave Background 
Radiation



Example:  Cosmic Microwave Background 
Radiation

• EM radiation from the Big Bang – redshifted by the expansion of 
the universe, nearly isotropic.

• Corresponds to a blackbody radiation spectrum with a 
temperature of 2.73 K.

• Peak frequency = ⁄2.82𝑘𝑘𝐵𝐵𝑇𝑇 ℎ =
�2.82 ∗ 1.381 ∗ 10−23 𝐽𝐽

𝐾𝐾
∗ 2.73 K 6.626 ∗ 10−34 J∗s = 1.60 ∗

1011 𝐻𝐻𝐻𝐻.

• Peak Energy for Photons = 2.82𝑘𝑘𝐵𝐵𝑇𝑇 = 2.82 ∗ 8.617 ∗ 10−5 𝑒𝑒𝑒𝑒
𝐾𝐾

∗
2.73 𝐾𝐾 = 6.63 ∗ 10−4 𝑒𝑒𝑒𝑒.



Example:  Cosmic Microwave Background 
Radiation

• Peak Wavelength = ⁄𝑃𝑃 𝑇𝑇 = ⁄2.898 ∗ 10−3 𝑚𝑚𝐾𝐾 2.73 𝐾𝐾 = 1.06 ∗
10−3 𝑚𝑚 = 1.06 𝑚𝑚𝑚𝑚 (283 giga Hz, 1.17 milli eV for photons) – short 
microwaves.



Example:  Cosmic Microwave Background 
Radiation

• Energy density:  Recall intensity = c/4 * (energy density), so

• Energy density = 4
𝑐𝑐
∗ 𝐼𝐼 = 4

𝑐𝑐
∗ �2𝜋𝜋5𝑘𝑘𝐵𝐵4𝑇𝑇4 15ℎ3𝑐𝑐2

• = �8𝜋𝜋5𝑘𝑘𝐵𝐵4𝑇𝑇4 15ℎ3𝑐𝑐3 = ⁄4σ𝑇𝑇4 𝑐𝑐, where 𝜎𝜎 ≈ 5.670 ∗ 10−8 𝑊𝑊
𝑚𝑚2𝐾𝐾4

• Energy density =
�4 ∗ 5.670 ∗ 10−8 𝑊𝑊

𝑚𝑚2𝐾𝐾4
∗ 2.73 𝐾𝐾 4 3.00 ∗ 108 𝑚𝑚

𝑠𝑠

• = 4.20 ∗ 10−14 𝐽𝐽
𝑚𝑚3 = 0.262 𝑒𝑒𝑒𝑒

𝑐𝑐𝑚𝑚3



Quantum Statistics

• Blackbody spectrum can be derived from the photon gas model.
• Requires distributions which take quantum mechanical effects into 

account.
• ⁄𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≈ ∏𝑖𝑖=1

𝑁𝑁 𝑍𝑍𝑖𝑖 𝑁𝑁! is not valid because we multiple particles can 
occupy the same quantum state, and occupancy can affect the 
probabilities of other particles occupying the same state.

• Return to our set up of a small system in equilibrium with a much larger 
reservoir, but now we will allow particles as well as energy to be 
exchanged.  The state is defined by both energy and the number of 
particles.

• System is vaguely defined – could be a particular quantum state.



Gibbs Factor

• Prob(𝑠𝑠1)/Prob(𝑠𝑠0) = Ω𝑅𝑅1/ Ω𝑅𝑅0= exp[(𝑆𝑆𝑅𝑅1- 𝑆𝑆𝑅𝑅0)/ 𝑘𝑘𝐵𝐵]  

• ≈ exp 1
𝑘𝑘𝐵𝐵

𝛼𝛼𝛼𝛼𝑅𝑅
𝛼𝛼𝐸𝐸𝑅𝑅

∗ − 𝜀𝜀1 − 𝜀𝜀0 + 𝛼𝛼𝛼𝛼𝑅𝑅
𝛼𝛼𝑁𝑁𝑅𝑅

∗ − 𝑛𝑛1 − 𝑛𝑛0 =

• = exp 1
𝑘𝑘𝐵𝐵

1
𝑇𝑇
∗ − 𝜀𝜀1 − 𝜀𝜀0 + −𝜇𝜇

𝑇𝑇
∗ − 𝑛𝑛1 − 𝑛𝑛0

• = exp ⁄𝜇𝜇 𝑛𝑛1 − 𝑛𝑛0 − 𝜀𝜀1 − 𝜀𝜀0 𝑘𝑘𝐵𝐵𝑇𝑇
• = exp 𝛽𝛽 𝜇𝜇 𝑛𝑛1 − 𝑛𝑛0 − 𝜀𝜀1 − 𝜀𝜀0
• 𝜇𝜇 ≡ −𝑇𝑇 ∗ 𝛼𝛼𝛼𝛼

𝛼𝛼𝑁𝑁
is the chemical potential.  Equal chemical potential 

means diffusive equilibrium.



Gibbs Factor

• Gibbs Factor = exp 𝛽𝛽 𝜇𝜇𝑛𝑛𝑠𝑠 − 𝐸𝐸𝑠𝑠 ∝ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠)

• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 1
Ƶ
∗ exp 𝛽𝛽 𝜇𝜇𝑛𝑛𝑠𝑠 − 𝐸𝐸𝑠𝑠

• Ƶ = ∑𝑠𝑠 exp 𝛽𝛽 𝜇𝜇𝑛𝑛𝑠𝑠 − 𝐸𝐸𝑠𝑠 , sum of the Gibbs factors, is the grand 
partition function.

• If more than one type of particle is present, then 

• Gibbs Factor = exp 𝛽𝛽 ∑𝑗𝑗 𝜇𝜇𝑗𝑗 ∗ 𝑛𝑛𝑗𝑗,𝑠𝑠 − 𝐸𝐸𝑠𝑠 .



Gibbs Factor

• Assume one type of particle, and the particles are 
indistinguishable.

• Let n be the number of particles in the quantum state, and let 
energy E = 𝑛𝑛𝜀𝜀.

• Gibbs Factor = exp 𝛽𝛽 𝜇𝜇𝑛𝑛𝑠𝑠 − 𝜀𝜀𝑛𝑛𝑠𝑠 = exp −𝑛𝑛𝑠𝑠𝛽𝛽 𝜀𝜀 − 𝑠𝑠
• = exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠 𝑛𝑛𝑟𝑟



Fermions

• Fermions (ex. Electrons) combine their wavefunctions anti-
symmetrically – therefore the Pauli exclusion principle applies –
no two fermions can have an identical set of quantum numbers.

• For the Gibbs factor, n can have only two values:  0 or 1.
• Ƶ = exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠 0 + exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠 1

• = 1 + exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠
• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛 = 0 = ⁄1 1 + exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠
• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛 = 1 = ⁄exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠 1 + exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠
• = ⁄1 exp 𝛽𝛽 𝜀𝜀 − 𝑠𝑠 + 1



Fermions

• < 𝑛𝑛 > = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛 = 1 = ⁄1 exp 𝛽𝛽 𝜀𝜀 − 𝑠𝑠 + 1 - Fermi-Dirac 
distribution.

• < 𝐸𝐸 > = 𝜀𝜀 ∗ < 𝑛𝑛 > = ⁄𝜀𝜀 exp 𝛽𝛽 𝜀𝜀 − 𝑠𝑠 + 1
• For 𝜀𝜀 ≪ 𝜇𝜇, < 𝑛𝑛 > → 1

• For 𝜀𝜀 ≈ 𝜇𝜇, < 𝑛𝑛 > ≈ 1
2

• For 𝜀𝜀 ≫ 𝜇𝜇, < 𝑛𝑛 > → 0



Bosons

• Bosons (ex. Photons and other force particles) combine their 
wavefunctions symmetrically – therefore the Pauli exclusion 
principle is not applicable – any non-negative integer number of 
bosons can have an identical set of quantum numbers – tend to 
cluster.

• 𝑛𝑛 = 0, 1, 2 , … ,∞
• Ƶ = ∑𝑗𝑗=0∞ exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠 𝑗𝑗 = ⁄1 1 − exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠 , 
• by the geometric sum, 𝜇𝜇 < 𝜀𝜀

• < 𝑛𝑛 > = ∑𝑗𝑗=0∞ 𝑗𝑗 ∗ exp −𝑗𝑗𝛽𝛽(𝜀𝜀 − 𝜇𝜇) ∗ 1 − exp −𝛽𝛽 𝜀𝜀 − 𝑠𝑠



Bosons

• Let 𝛾𝛾 = 𝛽𝛽(𝜀𝜀 − 𝜇𝜇)

• < 𝑛𝑛 > = ∑𝑗𝑗=0∞ 𝑗𝑗 ∗ exp −𝑗𝑗𝛾𝛾 ∗ 1 − exp −𝛾𝛾

• = ∑𝑗𝑗=0∞ ⁄−𝑑𝑑 exp −𝑗𝑗𝛾𝛾 𝑑𝑑𝛾𝛾 ∗ 1 − exp −𝛾𝛾

• = − �𝑑𝑑 ∑𝑗𝑗=0∞ exp −𝑗𝑗𝛾𝛾 𝑑𝑑𝛾𝛾 ∗ 1 − exp −𝛾𝛾

• = − �𝑑𝑑 ∑𝑗𝑗=0∞ exp −𝛾𝛾 𝑗𝑗 𝑑𝑑𝛾𝛾 ∗ 1 − exp −𝛾𝛾
• = − ⁄𝑑𝑑 ⁄1 1 − exp −𝛾𝛾 𝑑𝑑𝛾𝛾 ∗ 1 − exp −𝛾𝛾



Bosons

• < 𝑛𝑛 > = ⁄exp −𝛾𝛾 1 − exp −𝛾𝛾 2 ∗ 1 − exp −𝛾𝛾
• = ⁄exp −𝛾𝛾 1 − exp −𝛾𝛾 = ⁄1 exp 𝛾𝛾 − 1
• < 𝑛𝑛 > = ⁄1 exp 𝛽𝛽(𝜀𝜀 − 𝜇𝜇) − 1 - Bose-Einstein Distribution
• < 𝐸𝐸 > = 𝜀𝜀 ∗ < 𝑛𝑛 > = ⁄𝜀𝜀 exp 𝛽𝛽(𝜀𝜀 − 𝜇𝜇) − 1
• 𝜀𝜀 > 𝜇𝜇 required
• For 𝜀𝜀 →+ 𝜇𝜇, < 𝑛𝑛 > → ∞
• For 𝜀𝜀 ≫ 𝜇𝜇, < 𝑛𝑛 > → 0



Distributions Comparisons



Chemical Potential and Photons

• Chemical potential typically depends on temperature.  
Complicates the mathematics of quantum statistics.

• The chemical potential conserves the total number of particles.  
The total number of matter particles is not affected by 
temperature (aside from ultra high energy situations).

• There is no conservation law of photons.  Their numbers change 
freely according to energy.  

• Photons are therefore always in diffusive equilibrium, so their 
chemical potential is zero.



Distribution for Photons

• Photons are bosons, so they follow the Bose-Einstein distribution.
• Photon energy = Planck’s constant * frequency.
• Bose-Einstein distribution for photons, with chemical potential set 

to zero:
• < 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 > = ⁄1 exp 𝛽𝛽ℎ𝑓𝑓 − 1
• < 𝐸𝐸𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 > = ⁄ℎ𝑓𝑓 exp 𝛽𝛽ℎ𝑓𝑓 − 1



Blackbody Radiation Spectrum – Photon Gas

• Recall: 𝐸𝐸 = 𝜋𝜋 ∫0
∞ < 𝜀𝜀𝑛𝑛 > 𝑛𝑛2𝑑𝑑𝑛𝑛.  n here is for modalities, not 

number of particles.
• < 𝜀𝜀𝑛𝑛 > =< 𝐸𝐸𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠, 𝑛𝑛 > = ⁄ℎ𝑓𝑓𝑛𝑛 exp 𝛽𝛽ℎ𝑓𝑓𝑛𝑛 − 1 ,
• Where 𝑓𝑓𝑛𝑛 = ⁄𝑛𝑛𝑐𝑐 2𝐿𝐿 .

• 𝐸𝐸 = 𝜋𝜋 ∫0
∞ ⁄⁄𝑛𝑛ℎ𝑐𝑐 2𝐿𝐿 exp ⁄𝑛𝑛ℎ𝑐𝑐 2𝐿𝐿𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑛𝑛2𝑑𝑑𝑛𝑛

• n = 2Lf/c = 2L/λ = 2Lε/(hc), 
• dn = 2L/c * df = −2𝐿𝐿 ∗ ⁄𝑑𝑑λ λ2= 2L/(hc) * dε, 
• where λ is the wavelength and ε = hf is the photon energy.



Blackbody Radiation Spectrum – Photon Gas

• 𝐸𝐸 = 𝜋𝜋 ∫0
∞ ⁄ℎ𝑓𝑓 exp ⁄ℎ𝑓𝑓 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 2𝐿𝐿𝑓𝑓

𝑐𝑐

2
∗ 2𝐿𝐿

𝑐𝑐
∗ 𝑑𝑑𝑓𝑓

• = 𝐿𝐿3 ∫0
∞ ⁄8𝜋𝜋ℎ 𝑐𝑐3 ∗ ⁄𝑓𝑓3 exp ⁄ℎ𝑓𝑓 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑑𝑑𝑓𝑓

• 𝐸𝐸 = 𝜋𝜋 ∫∞
0 �ℎ𝑐𝑐

λ
exp ⁄ℎ𝑐𝑐 𝑘𝑘𝐵𝐵𝑇𝑇λ − 1 ∗ 2𝐿𝐿

λ

2
∗ −2𝐿𝐿

λ2
∗ 𝑑𝑑λ

• = 𝐿𝐿3 ∫0
∞8𝜋𝜋ℎ𝑐𝑐 ∗ ⁄1 λ5 ∗ ⁄1 exp ⁄ℎ𝑐𝑐 𝑘𝑘𝐵𝐵𝑇𝑇λ − 1 ∗ 𝑑𝑑λ

• 𝐸𝐸 = 𝜋𝜋 ∫0
∞ ⁄𝜀𝜀 exp ⁄𝜀𝜀 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 2𝐿𝐿𝜀𝜀

ℎ𝑐𝑐

2
∗ 2𝐿𝐿
ℎ𝑐𝑐
∗ 𝑑𝑑𝜀𝜀

• = 𝐿𝐿3 ∫0
∞ ⁄8𝜋𝜋 ℎ𝑐𝑐 3 ∗ ⁄𝜀𝜀3 exp ⁄𝜀𝜀 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑑𝑑𝜀𝜀



Blackbody Radiation Spectrum – Photon Gas

• Multiply energy by c/(4 * volume), where volume = 𝐿𝐿3, for the 
intensity (power per area):

• 𝐼𝐼 = ∫0
∞ ⁄2𝜋𝜋ℎ 𝑐𝑐2 ∗ ⁄𝑓𝑓3 exp ⁄ℎ𝑓𝑓 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑑𝑑𝑓𝑓

• 𝐼𝐼 = ∫0
∞2𝜋𝜋ℎ ∗ ⁄1 λ5 ∗ ⁄1 exp ⁄ℎ𝑐𝑐 𝑘𝑘𝐵𝐵𝑇𝑇λ − 1 ∗ 𝑑𝑑λ

• 𝐼𝐼 = ∫0
∞ ⁄2𝜋𝜋 ℎ3𝑐𝑐2 ∗ ⁄𝜀𝜀3 exp ⁄𝜀𝜀 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑑𝑑𝜀𝜀



Blackbody Radiation Spectrum – Photon Gas

• To integrate for the total intensity:
• 𝐼𝐼 = �2𝜋𝜋 𝑘𝑘𝐵𝐵𝑇𝑇 4 ℎ3𝑐𝑐2 ∗ ∫0

∞ ⁄𝛾𝛾3 exp 𝛾𝛾 − 1 ∗ 𝑑𝑑𝛾𝛾 ,

• where 𝛾𝛾 = 𝜀𝜀
𝑘𝑘𝐵𝐵𝑇𝑇

,𝑑𝑑𝛾𝛾 = 𝑑𝑑𝜀𝜀
𝑘𝑘𝐵𝐵𝑇𝑇

, 𝜀𝜀 = 𝑘𝑘𝐵𝐵𝑇𝑇𝛾𝛾,𝑑𝑑𝜀𝜀 = 𝑘𝑘𝐵𝐵𝑇𝑇 ∗ 𝑑𝑑𝛾𝛾

• ∫0
∞ ⁄𝛾𝛾3 exp 𝛾𝛾 − 1 ∗ 𝑑𝑑𝛾𝛾 = 𝜋𝜋4

15
.

• 𝐼𝐼 = �2𝜋𝜋5𝑘𝑘𝐵𝐵4 15ℎ3𝑐𝑐2 ∗ 𝑇𝑇4

• Energy density = 4
𝑐𝑐
∗ 𝐼𝐼 = �8𝜋𝜋5𝑘𝑘𝐵𝐵4𝑇𝑇4 15ℎ3𝑐𝑐3



Blackbody Radiation – Number of Photons

• May be interested in the density of photons.

• 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 = 𝜋𝜋 ∫0
∞ < 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠,𝑛𝑛 > 𝑛𝑛2𝑑𝑑𝑛𝑛.  

• < 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠,𝑛𝑛 > = ⁄1 exp 𝛽𝛽ℎ𝑓𝑓𝑛𝑛 − 1 ,
• Where 𝑓𝑓𝑛𝑛 = ⁄𝑛𝑛𝑐𝑐 2𝐿𝐿 .

• < 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠,𝑛𝑛 > = 𝜋𝜋 ∫0
∞ ⁄1 exp ⁄𝑛𝑛ℎ𝑐𝑐 2𝐿𝐿𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑛𝑛2𝑑𝑑𝑛𝑛

• n = 2Lf/c = 2L/λ = 2Lε/(hc), 
• dn = 2L/c * df = −2𝐿𝐿 ∗ ⁄𝑑𝑑λ λ2= 2L/(hc) * dε, 
• where λ is the wavelength and ε = hf is the photon energy.



Blackbody Radiation – Number of Photons

• 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 = 𝜋𝜋 ∫0
∞ ⁄1 exp ⁄ℎ𝑓𝑓 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 2𝐿𝐿𝑓𝑓

𝑐𝑐

2
∗ 2𝐿𝐿

𝑐𝑐
∗ 𝑑𝑑𝑓𝑓

• = 𝐿𝐿3 ∫0
∞ ⁄8𝜋𝜋 𝑐𝑐3 ∗ ⁄𝑓𝑓2 exp ⁄ℎ𝑓𝑓 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑑𝑑𝑓𝑓

• 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 = 𝜋𝜋 ∫∞
0 ⁄1 exp ⁄ℎ𝑐𝑐 𝑘𝑘𝐵𝐵𝑇𝑇λ − 1 ∗ 2𝐿𝐿

λ

2
∗ −2𝐿𝐿

λ2
∗ 𝑑𝑑λ

• = 𝐿𝐿3 ∫0
∞8𝜋𝜋 ∗ ⁄1 λ4 ∗ ⁄1 exp ⁄ℎ𝑐𝑐 𝑘𝑘𝐵𝐵𝑇𝑇λ − 1 ∗ 𝑑𝑑λ

• 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 = 𝜋𝜋 ∫0
∞ ⁄1 exp ⁄𝜀𝜀 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 2𝐿𝐿𝜀𝜀

ℎ𝑐𝑐

2
∗ 2𝐿𝐿
ℎ𝑐𝑐
∗ 𝑑𝑑𝜀𝜀

• = 𝐿𝐿3 ∫0
∞ ⁄8𝜋𝜋 ℎ𝑐𝑐 3 ∗ ⁄𝜀𝜀2 exp ⁄𝜀𝜀 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑑𝑑𝜀𝜀



Blackbody Radiation – Number of Photons

• Divide by volume, where volume = 𝐿𝐿3, for the density:

• 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 = ∫0
∞ ⁄8𝜋𝜋 𝑐𝑐3 ∗ ⁄𝑓𝑓2 exp ⁄ℎ𝑓𝑓 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑑𝑑𝑓𝑓

• 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 = ∫0
∞8𝜋𝜋 ∗ ⁄1 λ4 ∗ ⁄1 exp ⁄ℎ𝑐𝑐 𝑘𝑘𝐵𝐵𝑇𝑇λ − 1 ∗ 𝑑𝑑λ

• 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 = ∫0
∞ ⁄8𝜋𝜋 ℎ𝑐𝑐 3 ∗ ⁄𝜀𝜀2 exp ⁄𝜀𝜀 𝑘𝑘𝐵𝐵𝑇𝑇 − 1 ∗ 𝑑𝑑𝜀𝜀



Blackbody Radiation – Number of Photons

• To integrate for the total density:
• 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 = 8𝜋𝜋 ⁄𝑘𝑘𝐵𝐵𝑇𝑇 ℎ𝑐𝑐 3 ∗ ∫0

∞ ⁄𝛾𝛾2 exp 𝛾𝛾 − 1 ∗ 𝑑𝑑𝛾𝛾 ,

• where 𝛾𝛾 = 𝜀𝜀
𝑘𝑘𝐵𝐵𝑇𝑇

,𝑑𝑑𝛾𝛾 = 𝑑𝑑𝜀𝜀
𝑘𝑘𝐵𝐵𝑇𝑇

, 𝜀𝜀 = 𝑘𝑘𝐵𝐵𝑇𝑇𝛾𝛾,𝑑𝑑𝜀𝜀 = 𝑘𝑘𝐵𝐵𝑇𝑇 ∗ 𝑑𝑑𝛾𝛾

• ∫0
∞ ⁄𝛾𝛾2 exp 𝛾𝛾 − 1 ∗ 𝑑𝑑𝛾𝛾 ≈ 2.40, from numeric integration, no 

known analytic method.
• 𝑛𝑛𝑝𝑝ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 ≈ 8𝜋𝜋 ⁄𝑘𝑘𝐵𝐵 ℎ𝑐𝑐 3 ∗ 2.40 ∗ 𝑇𝑇3

• = 19.20 ∗ 𝜋𝜋 ⁄𝑘𝑘𝐵𝐵 ℎ𝑐𝑐 3 ∗ 𝑇𝑇3



Example:  Cosmic Microwave Background 
Radiation

• Temperature = 2.73 K.
• Photon Density = 19.20 ∗ 𝜋𝜋 ⁄𝑘𝑘𝐵𝐵 ℎ𝑐𝑐 3 ∗ 𝑇𝑇3

• = 19.20 ∗

𝜋𝜋 �8.617 ∗ 10−5 𝑒𝑒𝑒𝑒
𝐾𝐾

4.136 ∗ 10−15 𝑒𝑒𝑒𝑒 ∗ 𝑠𝑠 ∗ 3.00 ∗ 108 𝑚𝑚
𝑠𝑠

3
∗

2.73 𝐾𝐾 3 = 411 million photons per m^3 = 411 photons per cm^3.



Example:  Cosmic Microwave Background 
Radiation

• Average photon energy = (energy density)/(photon density).
• Average photon energy ≈

��8𝜋𝜋5𝑘𝑘𝐵𝐵4𝑇𝑇4 15ℎ3𝑐𝑐3 2.40 ∗ 8𝜋𝜋 ⁄𝑘𝑘𝐵𝐵𝑇𝑇 ℎ𝑐𝑐 3

• = ⁄𝜋𝜋4 36.0 ∗ 𝑘𝑘𝐵𝐵𝑇𝑇 ≈ 2.71 ∗ 𝑘𝑘𝐵𝐵𝑇𝑇
• For T = 2.73 K, average photon energy ≈ 2.71 ∗ 𝑘𝑘𝐵𝐵𝑇𝑇

• = 2.71 ∗ 8.617 ∗ 10−5 𝑒𝑒𝑒𝑒
𝐾𝐾 ∗ 2.73 𝐾𝐾 = 6.37 ∗ 10−4 𝑒𝑒𝑒𝑒

• Note:  similar to, but not identical to, the peak photon energy:
• 2.82 ∗ 𝑘𝑘𝐵𝐵𝑇𝑇 → 6.63 ∗ 10−4 𝑒𝑒𝑒𝑒 for T =  2.73 K.



Quantum Revolution

• Max Plank’s quantization of energy resolved the ultraviolet 
catastrophe and made it possible to derive the properties of 
blackbody radiation from first principles.

• Beginning of quantum mechanics.
• Energy levels of electrons in atoms orbiting the atomic nucleus 

also quantized.
• Explains spectral lines:  only photons with energy corresponding 

to discrete jumps are absorbed or omitted.



Quantum Revolution

• Explained the photo-electric effect – one of Albert Einstein’s 1905 
papers - won him the 1921Nobel Prize in Physics.

• Light only ejects electrons from metal if the frequency is high 
enough.  No electrons are ejected if the frequency is too low, 
regardless of intensity.

• Individual photons must carry enough energy to eject electrons.



Sources

• Dr. James A. McNeil – Professor of Physics at Colorado School of 
Mines – taught the thermal physics course I took as an 
undergraduate physics student there.

• Daniel V. Schroeder. An Introduction To Thermal Physics. –
textbook for my thermal physics course.

• “What is the Ultraviolet Catastrophe”.  Physics Explained. 
YouTube channel. - PhD theoretical physicist according to the 
channel description – inspiration for the lecture. 

• Note:  For “What is the Ultraviolet Catastrophe”.  Physics Explained., I 
take issue with how the author presents deriving the classical average 
energy for an EM wave modality.  Otherwise mostly excellent.



Sources

• Robert G. Littlejohn. University of California at Berkeley. The Classical 
Electromagnetic Field Hamiltonian.

• Wikipedia.
• Jacob Bronowski. The Ascent of Man.
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